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,--- INTRODUCTION 

In thin pjipor wi> (icNcrlbr .1 nu-tlicxl f«)r delprminlng If network prohluniN 

with arbitrary additional linear constraints beyond the standard node con- 

straints can be trinsformed Into pure network problems.  These "constra^tied 

networks" accurately model numerous resource allocation problems with objectives 

or restrictions that are not reflected in the node constraints of pure networks. 

When whose seemingly more general linear programming problems can be I fans- 

formed, they can be solved using any specialized network algorithm. Thus, 

significant computational savings can be realized over generax purpose methods. 

Our procedure determines if by a linear transformation an "extra" constraint 

can be transformed into an equivalent bounded sum of variables associated 

with arcs directed into or away from a single node.  If this is possible 

the procedure finds the linear transformation thit yields the equivalent 

constraint.  Finding the appropriate transiormation by our method is akin o 

finding values for dual evalvators of a basic solution to a network probier 

and lends itself to efficient computer implementation (41.  Further we s* <>w 

how the equivalent bounded sums can be incorporated into an enlarged pure 

network in a manner analogous to that given by Wagner [7], Manne [2,p. 382] 

and Charnes [1]. 

In section 2 we present the procedure for finding equivalent bounded 

sums of variables.  In section 3 we show how these sunu. ->c variables can be 

embodied in the node constrai its of an enlarged network.  A typical example 

of the constrained network Is given in section 4. 

2.  FINDING EQUIVALENT BOUNDED SUMS OF VARIABLES 

The constrained network optimization problem can be formulated mathe- 

matically as follows: 

I 
1 
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minimize: 

subject to; 

(1)  > 

(l.i)cA 
lilX|| 

(2) >:    P 

(i,J)£A 

u (i , j) t-A u g  for all irN 

iJXlJ  -d 

(3) x  > 0 for nil (l,J)cA 

whe.c N is a set of nodes or Junction points, A is a set of directed arcs 
or links between nodes in N, c^t   is the unit cost associated with 
arc (1,1), g  " 0 (>0) is the supply (demand) associated with node 

kcN and ^N g, - 0. 

The node conservation  constraints   (1) and  the non-negativity restrictions 

(3)  constitute the standard  constraints of  the pure network problem.     The 

additional constraint   (2)  precludes solving this problem with any existing 

network algorithm.     However,   If a constraint equivalent   Co   (2)   can be  found 

which in turn may be represented '/ node conservation constraints,  the problem 

can be solved using a network algorithm.     The procedure wc  shall describe 

determines if there exists a linear combination of  the node constraints  (1) 

which when subtracted from the extra cor.eLralnt   (2)  yields a bounded sum of 

variafiles associated with arcs directed into  (or away  from) a single node. 

Such Sounded sums will b(   shown to have equivalent  formulations as node conservation 

constraints in section 3. 

To find such a linear combination, we associate a multiplier w   with each 

node constraint and try to determine values for these w    such that p      =• w    - w, 

for every arc  (i,J)cA whose associated variable x.    does not appear In the 

equivalent constraint.     It may be observed that  if such    a linear combination 

exists,  then some  linear combination can be found in which the multiplier 

associated with any single node constraint is assigned a value of zero.    This follows 

from the fact that  the coefficient matrix for a network does not have  Tull 

row rank. 

We shall use the following notation in describing our procedure: 

T.   ■ {(k,J)cA) - the set of arcs in A directed away  from node kcN. 

2 
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H, " '(k.J) i A} - the set of arcs In A (iirt'cted into i.ode kt N. 

The procedure consists of the following three steps: 

Step 1.  Arbitrarily select a note ki N and make the assunption .'hat the 

extra constraint (2) is equivalent by a linear transformation to a partial sum 

of variables associated with a subset of arcs S directed .way from a single 

node (directed into a single node) I.e., we assume constraint (2) is equivalent to 

(4)    i:     XM - f vhere  ScTk (SeHjt). 
(i.j)cS 

Step 2.     Test  the assumption  by attempting  Co  find values  for all w   ,   JrN 

such  that  p      ■ w.-w.   for all arcs   (l,j)cA-S(l.e.,   try  to  find a  linear com- 

bination of  the node constraints  to subtract   from the extra constraint  yielding 

the constraint   (4)).     An explicit  procedure for making this  test will be given 

below. 

Step  3.    Apply step  1 and  step 2  to every subset  T    and  H     for krN until 

the  test  step verifies one of   the   following conditions: 

a) the assumption  is correct   for some T.   or H  . 

b) the assumption has  failed  for all T    and H   . 

c) the extra constraint   is  found to be  rcdu-^ant. 

d) «i equivalent constralnr  reveals that  the original problem lacks a 
feahible solution. 

To execute  step 2  for node qcN and set T  , we begin by setting the q 

multiplier w equal to zero.  Next we assign values to those multipliers 

associated with nodes linked to node q by arcs in A-T (i.e.. Ignoring the 

arcs in T ). For example, if an arc (i,q)tA-T exists we set w., the 
q q i 

multiplier for node i linked to node q by the arc (l,q). using the equation 

p. -w -w. (or equivalently w. ■ -p. ).  The equation p.. ■ w.-w. must be Klq q  1 7  1   rlq       ^      ^ij   j  1 

satisfied for all arcs (i,j)cA-T for the assumption to be correct, and thus 

; 

<.-#w*■**»■'• ■ ■■■       -'- ■ " 
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wi- check to see if It Is satisfied for every arc linking two nudeH with 

assigned multipliers.  If ll>ls is not tlie cnsi-, wo p.oroi'd to step J.  Ottier- 

wlse, we determine values for those unnsslgned miiHipllers w. assoi ialid 

with nodes linked (by an arc (l,j) in A-T ) to any node with a?  assigned 

multiplier using the equation w  - w - p  . 

At some point either all multipliers have been assigned values 

satisfying p  ■ w,"", for all (l,j)rA-T or the nodes vlth unasHigncd 

multipliers are not connected by arcs In A-T to nodes with assigned multipliers 

In the first caue, the differences p .-w are checked for each arc (q,J)'T 

to see if they assume one or more than one nonzero value.  If 

all of the differences are equal to zero, then the extra constraint Is either 

redundant or the problem is infeasible (depending on the value of the right 

hand side of the equivalent constraint since it has the form 0   d -    w g ). 
k.N   " 

If all of the differences equal one nonzero v^lue, then the assumption 

is true and S is determln.d by reference to the arcs associated with these 

nonzero values.  If the differences assume more than one distinct nonzero 

value, then the assumption is false and we return to step 3. 

If the nodes with unassigned multipliers are not connected to the nodes 

with assigned multipliers and the deletion of the arcs in T has created 

a disconnected network, we arbitrarily select an unassigned multiplier and 

assign it a variable value 8..  We then proceed as before assigning multiplier 

values to those w associated with nodes linked to nodes with assigned 

multipliers. At some point all multipliers have been assigned a value or 

another disjoint subnetwork has been found, if another disjoint subnetwork 

exists, we assign some unassigned multiplier a value of C and proceed as 

before. Ultimately, all multipliers will be assigned a value such that 
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p     -w -w     for all  arcs   (l,j)iA-T   .     At   tl.is point,  wc  proceed   to  cooiputo 

the  differences p     -w.   for  each  arc   (q,J)cT    and  to determine  values   for  tlu- 
qj   .1 q 

0   's.     A complete mathematical  description of  this procedure   Is given below. 

TEST  PROCEDtKE 

Let F be the set of Indices of nodes whose multipliers have been asslRned 

a value. The test of the assumption In step I for q-N and set T Is performed 

as  follows. 

Step 2.1 

Initially set m-O, w "0, and F-lq).  The varlab'o m Is used to denote the 

number of disjoint subnetworks created by deleting the arcs in T 

Step 2.2a 

If F"N go to step 2.3.  Otherwise, select an arc (1,))EA-T such that 

IcF, J^F and go to step 2.2b.  If no such arc exists, then select an arc 

(l,j)tA-T such that i^F, JcF and go to step 2.2c.  If no such arc exists, 
q 

then go to step 2.2d. 

Step 2.2b 

For the arc selected in 2.2a, set w -p..+w •  If p. .t'w.-w, for kcF 
j riJ i     kj J  k 

and (k,J)cA-T or if P*ttf
v*t''v,   for kcF  and (j,k)EA, then the assumption 

is false. Proceed to step 3.  If no ruch k exists set F-Fw{j} and begin 

step 2.2a again. 

SCep 2.2c 

For the arc selected in 2.2a, sat wj»w.-p .  If Pi]^\-}',i  fo*  kcF and 

(i,k)eA or if p. .j' w1"
w
k for kcF and (k,i)EA-T , then the assumption is 

false.  Proceed to step 3.  If no such k exists set F-FWii) and begin step 

2.2a again. 

• 



Step  2.2c 

Because  noden with usslgned multipliers  ,in'  mil    linke-.I   t.>  muii's  witii  mi 

assigned  multipliers,   set  m =  m  +1.     Let'»    be n   real   valued  vnrlablt-. 

Select  some k^F nrbitrnrlly.  set  w
k"0

m.   Rt,t  F-f»»(kl  and  be^ln  stop  2.2a ,iRaln. 

Step 2.3a 

For  all   (q.J)cT    compute  n    -  Pqi^j* 

Step 2.3b 

If m"0 and each n  equals either 0 or some unique non-zero real number  , 
qJ 

then  the assumption that  th'» extra constraint   is equivalent   tJ   (U)   is  correct. 

Further  S has been determined   (S ■  { (q, j )cT :     ^   .   m "i i),     and  an equivalent | 

constraint   is   . Z..     _       Ax..     <    d.-Z..      w. g,   -  f.    Unity coefficients on I 
(i,j)c  S ij    ~      kcN        k^k ' . 

the  variables x..  are obtained  by multiplying both sides of   the   inequality I 

by   1/^   .   (This multiplication may  reverse  »-he  inequality.     In   this  eise, 

S should be defined as S-T    -S and  f-g    -f  to obtain  (4).) ' q q 

If  m«0and  the  n      assumes more   than one distinct  nonzero value  the  assunp 
qj j 

tlon     is  false.     Proceed  to step  J.    If m-O and n     ■ 0  for all   (q.p-T I 

and   f 0 then  the original extra constraint  is redundant. ' 

Finally,  checking the sign of  the coefficients and the sign of  the  right- 

hand side   (in relation  to  the direction of  the  inequality)  may   indicate 

that  the original problem is infeasible. 

Step  2.3c 

If  m   •  0  it  is necessary  to compute values  for each 9.,   i  -  I, . . . ,m 

such  that each TT       equals 0 or  A  before  the assumption can be  accepted. 

Observe  that each n   .  can be expressed as n    "a.+b.   6,  where a.   is 
qj qJ   j   J   i j 

a real number and r equals 0, +1, or -1.  We define the sets J  * {J: 
\ 

-, .   - a,, 6. - 0) and J. - {j: n , -a. +6.6. ,8^ 0; for i-1 m. 
qj  J  j      i     qJ  J  J i j 
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i)     If   the dl,  JfJ0 assume raort-   than one distinct   nonzero vuluc   thr 

assumption  l«  false,  proceed  to  step  3.     11   the <i. .   |'J    an*  all 

zero or J,, ■ #,  ^o to   11    below.     If   the f».,   i1 .1     iiHKume a  untqite 

nonzero value,   *>,  go  to  111  below. 

11)     Since all Oj,   jcJ0 equal  zero   (or J
0 " 0)i   then  there are  two 

possibilities.     First,   there existF  an  index  1     such that   -a./Hji< 

-ak/6k for any J»«k,  j.kejj*.     if sc,  setting "j* -  -aj/Pj'   yields 

"   .-0 and "gi.t'O.    Thus set  's"7,
ait and go to ill below.     Second,   if  no 

such i    can be found  then by setting 9j- -a|/Bj  for some jcJj and 

for all  i every "„i vill eqaal  zero.    l)sir.   the reasoning  in  step 

2.3a the problem is either  infeasible or the constraint  is  redundant. I 

iii)     Since at least one of  the n   .   is nonzero and equals ^ then the value I 

for the unassigned <'^ can be  found  in  the  following manner.     If  ''>(). j 

set oj  such that Oj+ß.Ji 1 0 for all jejj and a.+P 0i - 0  for at  least 

one jfJ^.     If 6 > 0,  set ei  such that oiA+ßjei - 0 for all  jtjj and 

a.+ß.öj« 0 for at least one jtJ^.     If this is not possible  for some 1 

then the assumption is false.     Proceed to step 3. 

Having determinec values for all 0^,   1-1,..., m every "   .   is a real  valued 

constant.     The reasoning in step 2.3b can be applied to determine the  nature 
l 

of  the equivalent constraint. 

Theorem:     If an extra constraint is equivalent by a linear transformation to 

a bounded  sum of variables associated with arcs directed away from a  single .iode, 

the stated orocedure determines an equivalent bounded sum if and only  if one exists. 

V      ■ 
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Proof:     We   first   prove   that  when  the algorithm  terminate»;   In   step  .'. \   an 

equivalent   bounded  »um  lias been   Identified.     This   requires   IWK   ease;.. 

Case   1.     Assume m"0 and a value  for  every w    has been assigned.      In  this 

case   the vilues  for the w    ^ere determined using steps  2.2b .ind   2.2« . 

The  equation P1,"wi~Wi   ^8 satisfied   for  all ares   (i,))tA-T  . 

Vhus,   the only variables which appear  in an equivalent  constraint  ar«:  those 

associated with arcs  in T  .     For  every arc   (q,j)iT  ,n   ,   is computed and 
q q   qj 

provided each n   equals either 0 or 6, a sum of variables with unity 

coefficients is obtained. 

Case 2.  Assume m • 0 and a value for every w has been assigned.  In this 

cese it was not possible to assign a constant to some w using the equation 

p  "w -w  for (i,J)cA-T and icF or a constant to some w using Pi.'"!""! 

for (l,J)cA-T and jcF.  Consequently, some w  for an arbitrary node k 
q Ic 

in the m  disconnected subnetwork is assigned the variable value 0 . 
m 

Values for the node multipliers for the other nodes in this subnetwork 

connected to node k by arcs in A-T are then determined by the equation 

p   "w, -w, or p "w.-w, . Again once all node multipliers have been assigned 
ik   k  i    kj J k 

values (constant or variable) that satisfy those equations only arcs in 

T can appear in the equivalent constraint.  Then a value for each 0  is 

determined such that TI ."0 for JeT - S and such that n  ■ ^ for HS. 
qJ q qj 

These 6    must exist for the original constraint  to be equivalent  to   (4). 

We  next  prove  thai  the algorithm will  find the equivalent bounded sum when 

it  exists.    Assume there exists a  linear combination of  the node constraints 

which when subtracted  from the extra constraint yields an equivalent  constraint 

bounding the sum of  flows on arcs directed away from a single node q.    We 

note  that  the rank of  the node  constraint matrix is n-1 where n  is  the 

number of nodes.    By fixing one node multiplier to a particular value, 

the  remaining node multipliers  in any linear combination are uniquely 

-8- 



determined by sequentially solving a system of equations each involving only 

one unknown variable. That is, when the assumption is made that S«Tq, the 

multiplier w is set equal to 0, and unique multipliers are determined such 

that Pj»""*!-«* for all (iiJ)fA-T .  Through this process, the appropriatt» 

linear combination is Identified. 

The procedure for testing the assumption that S€H is analaguus to that given 

for terting the assumption that ScT .  The differences are that the values 

for the w are determined using the arcs (i,j)EA-H . 

An obvious advantage of this procedure is that the subsets T and IL 

must be examined only once to discover an equivalent bounded sum of variables 

associated with any subset of the arcs in T. or li . Further it is not 

necessary to determine a value for every node multiplier before an as- 

sumption for a particular set can be rejected.  That is wherever p /w.-w 

for any arc (i,j)eA-T (or A-H ) the assumption is rejected irrespective 

of whether all w have been assigned a value.  If the network is not 

connected by arcs in A-T . the values of n . for all jeJ should be 
q qj        o 

checked before setting a node multiplier equal to 0,. If some " , is 
1 qj 

not equal either to U or c the current assumption can be rejected.  If 

the n ,. for all jeJ equal only 0 or o then a node in a disconnected 
qj        J o M 

network should be assigned a value of 6.. When all nodes lu this sub- 

network have been assigned a value, Che n  for jeJ. should be checked. 
qj     1 

This allows assumptions to be rejected without first computing a constant 

value for every node multiplier. 

Ue have therefore established a procedure to determine if by a 

linear transformation it is possible to find a bounded sum of variables 

equivalent to a given constraint. The procedure can be applied to "less 

than or equal", "greater than or equal", or equality type constraints. 

9 
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1!   the original  problem  nuhuli's  soviin]   t-xtra  i-onst r.ii nt s,   iticn   t lu-  proccdurf 

can  be   applied   to  each   one    individually.      In   ihl'i   cane  we  will   require   that 

the  transformed   constraints   involve  liisjoint   sets  of   variables or  nested   sets 

of variables   in  a single node constraint   for   the  problem to be  reforroviiaüed  as 

an  enlarged  network  by   the  procedure   given   in   section   J  belov.     These   restrictions 

parallel   those  given  by  Wagner  [7]   for  transportation  problems.     Our  procedure 

can also be  applied   to  constrained  networks with  bounded variables r.nd   to 

constrained  generalized  networks   in which   the  constraint matrix  of   the  gene'-ali ?.e 1 

network does not   have   full  row rank.     In   this  case   the  scaling procedure  ot    (3j 

must  be applied   first   to obtai.r< an equivalent   constrained pure network  problem. 

3.     INCORPORATING  BOUNDED SUMS  INTO NOPE CONSTRAINTS 

A procedure  for extending the  transportation model  to  include a bounded 

sum of  variables   in  a  single node  constraint   has  been  Riven by,   Wagner   [71, 

Manne  (2,  p.   382]   and Charnes  (1).     We state  an analogous procedure  for net- 

works  to complete  the  reformulation of  constrained  networks.     Let  S be a  set 

of arcs directed   into or away from a single  node  k.     Any network with an 

additional  restriction of  the  form      I        x     =  f  can be transformed  into an 
(i,j)cS 1J- 

enlarged network having two additional nodes  and  at most  two addit'onal  arcs 

by  the  following procedure  (We use  the notation defined  in section  2.) 

Step  1.     Set  N - N  u (k',  k' '}. 

Step  2.     Set  g. ,   ■ -£ and set g, ,,   -  f 

Step  3.     a)     If  S c Tk define EK (k'.j)! (k,JUS) .     For every   (k'.jKR 

set  Cj-t^Ct.*«     Set  A»AwRw{ (k.k*')}   and  set  c     , ,=0.    Co  to 

step  4. 

b)  If S«H. define R - f (i,k" ) j (i.k)'S 1.  For every (i.k'M'R 

Set Cik""Cik- 

step A. 

Set A-A»»Rw<{ (k',k) 1 and set   i.°ü-  i;o to 

10 



Step 4.     a) If   the  constraint   is  a  "less   than  or  equal"   type  set 

A-A ii    (k'.k")    and set  c. ,k,,-0.     Go to step 5. 

b) If   the constraint  is a "sreator  than or equal" type set 

A-A w   (k'Mc')    and set ck,,k,   =■ 0.     Go to step 5. 

c) If   the constraint  is an equality  constraint  go  to step  5. 

Step 5.     Set A-A-S 

The proof of  this procedure follows directly  from the construction and   is 

omitted. 

4.0    APPLICATION AND EXAMPLE 

Numerous models have the structure of  a network problem with additional 

linear constraints.     These restrictions may  represent secondary objectives 

or restrictions that are not  reflected  in either  the objective  function or 

the standard node constraints.    The following example typifies this class of 

problems. 

Consider a network model  for  the distribution of  a daily newspaper  from 

the printing plant  to several surrounding communities.    Suppose  that  the ob- 

jective is to minimize the cost of making the necessary deliveries with the 

additional provision that the average time  for delivering a paper be no more 

than 6 hours.     It should be clear that without  this additional  restriction 

a minimum cost solution might conflict with the  important customer service 

objective of quick delivery.    In Figure 1  the unit delivery times are  indicated 

in the semi-circle on the corresponding arc.  and  the net supply or demand 

figures in thousands of papers are indicated beside each node. 

11 
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Thus for this exaiple the total delivery time for 100,000 papers must not 

exceed 600,000 hours. 

Using the procedure given in section 2, vie assune first that ScT,. 

Vfe set nM), Wj»0 and P={1).    By step 2.2d we set /n=T[H-l, w2= Sjand F={l}u{2}. 

Next set w4= 4*e1 and F,»Fü{4)f set w5= 5+Oj^ and P=Fa{5}, set Wg-3+ej^ and 

F=Fu{6).    Vte set w^l+e^ but note that p^ ^'^'2 and the assvlt,l,tiQn'that 

SeTj^ is rejected.    We next assune that SeTj«    Set ^K}tvi~-0 and F^{2}.    By 

step 2.2c vie set w1=-2, P-Fw{l}.    Next set w4»3, P»Fw{4} and set w3=0, F^v*{3}. 

Vte set w6«3, F*fv{6} and set w^, P«Fv{7}.    Next set w5«4, F«F«*{5} and w8=7, 

F^fvCS}.    At this point P-N and by step 2.3a vie oonpute Ti26a3-3=0, Tt24=4-3=1, 

and n25»5-4»l.    Hence the original extra constraint is equivalent to the 

partial sun X24*9C25^• 

Thus the customer service objective can only be satisfied if the tofeal 

number of papers shipped on routes (2,4) and (2,5)  is less than or equal to 

60,000.    The network in Figure 1 can be transformed into the network in 

Figure 2 with the partial sun restriction embodied in the node constraints. 
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